Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration.

نویسندگان

  • Pierre Cardol
  • Geoffrey Gloire
  • Michel Havaux
  • Claire Remacle
  • René Matagne
  • Fabrice Franck
چکیده

Photosynthetic activities were analyzed in Chlamydomonas reinhardtii mitochondrial mutants affected in different complexes (I, III, IV, I + III, and I + IV) of the respiratory chain. Oxygen evolution curves showed a positive relationship between the apparent yield of photosynthetic linear electron transport and the number of active proton-pumping sites in mitochondria. Although no significant alterations of the quantitative relationships between major photosynthetic complexes were found in the mutants, 77 K fluorescence spectra showed a preferential excitation of photosystem I (PSI) compared with wild type, which was indicative of a shift toward state 2. This effect was correlated with high levels of phosphorylation of light-harvesting complex II polypeptides, indicating the preferential association of light-harvesting complex II with PSI. The transition to state 1 occurred in untreated wild-type cells exposed to PSI light or in 3-(3,4-dichlorophenyl)-1,1-dimethylureatreated cells exposed to white light. In mutants of the cytochrome pathway and in double mutants, this transition was only observed in white light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. This suggests higher rates of nonphotochemical plastoquinone reduction through the chlororespiratory pathway, which was confirmed by measurements of the complementary area above the fluorescence induction curve in dark-adapted cells. Photo-acoustic measurements of energy storage by PSI showed a stimulation of PSI-driven cyclic electron flow in the most affected mutants. The present results demonstrate that in C. reinhardtii mutants, permanent defects in the mitochondrial electron transport chain stabilize state 2, which favors cyclic over linear electron transport in the chloroplast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas.

State transitions correspond to a major regulation process for photosynthesis, whereby chlorophyll protein complexes responsible for light harvesting migrate between photosystem II and photosystem I in response to changes in the redox poise of the intersystem electron carriers. Here we disclose their physiological significance in Chlamydomonas reinhardtii using a genetic approach. Using single ...

متن کامل

Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas1[OPEN]

In photosynthetic eukaryotes, the metabolite exchange between chloroplast and mitochondria ensures efficient photosynthesis under saturating light conditions. The Chlamydomonas reinhardtii mutant stm6 is devoid of the mitochondrial transcription termination factor MOC1 and aberrantly expresses the mitochondrial genome, resulting in enhanced photosynthetic hydrogen production and diminished ligh...

متن کامل

The cytochrome c gene from the green alga Chlamydomonas reinhardtii. Structure and expression in wild-type cells and in obligate photoautotrophic (dk) mutants.

The expression of the Chlamydomonas reinhardtii cytochrome c gene was studied at the steady-state mRNA level. The inclusion of acetate under illumination produced a marked increase in cytochrome c transcripts. This effect was not affected by two inhibitors of mitochondrial energy metabolism. Three different obligate photoautotrophic mutants with defective mitochondria showed normal levels of in...

متن کامل

Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas.

In photosynthetic eukaryotes, the metabolite exchange between chloroplast and mitochondria ensures efficient photosynthesis under saturating light conditions. The Chlamydomonas reinhardtii mutant stm6 is devoid of the mitochondrial transcription termination factor MOC1 and aberrantly expresses the mitochondrial genome, resulting in enhanced photosynthetic hydrogen production and diminished ligh...

متن کامل

CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii.

In oxygen-evolving photosynthesis, the two photosystems, photosystem I (PSI) and photosystem II (PSII), function in parallel, and their excitation levels must be balanced to maintain an optimal photosynthetic rate under various light conditions. State transitions balance excitation energy between the two photosystems by redistributing light-harvesting complex II (LHCII) proteins. Here we descri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 133 4  شماره 

صفحات  -

تاریخ انتشار 2003